MathExcel Supplemental Worksheet M: FTC, Indefinite Integrals, and Substitution

1. Fill in the blanks to complete the statement of the Fundamental Theorem of Calculus.
(a) FTC 1:

If f is \qquad on the interval \qquad then for all x in \qquad the function g defined by $g(x)=\int-\quad f(t) d t$ is differentiable on the interval \qquad , and satisfies the equation \qquad $=f(x)$.
(b) FTC 2:

If f is \qquad on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x=$ \qquad , where F is \qquad , i.e., F and f satisfy the equation \qquad $=f(x)$.
2. If $f(x)=\int_{0}^{\sin (x)} \sqrt{1+t^{2}} d t$ and $g(y)=\int_{3}^{y} f(x) d x$, find $g^{\prime \prime}\left(\frac{\pi}{6}\right)$.
3. If $f(1)=12, f^{\prime}$ is continuous, and $\int_{1}^{4} f^{\prime}(x) d x=17$, what is the value of $f(4)$?
4. What is the difference between a definite and an indefinite integral? Give an example of each.
5. Evaluate the following
(a) $\int\left(x^{1.3}+7 x^{2.5}\right) d x$.
(b) $\int(\sin (x)+\sinh (x)) d x$.
(Note that the hyperbolic sine function is defined as $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$.)
(c) $\int_{0}^{\pi / 3} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta$.
6. A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?
7. A bacteria population is 4000 at time $t=0$ and its rate of growth is $1000 \cdot 2^{t}$ bacteria per hour after t hours. What is the population after 1 hour?
8. A particle moves along the x-axis with velocity $v(t)=t^{-2}$. At time $t=1$, the particle is at the origin. Show that the particle will never pass the point $x=1$. Hint: Find the position equation.
9. State the substitution rule for both definite and indefinite integrals. Use complete sentences.
10. Evaluate:
(a) $\int x \sqrt{x^{2}+7} d x$.
(b) $\int x^{2} e^{x^{3}} d x$.
(c) $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$.
(d) $\int_{1}^{2} \frac{4 x^{3}}{x^{4}+2} d x$.
11. Recall that a function $f(x)$ is odd if $f(-x)=-f(x)$ for all x and it is even if $f(-x)=f(x)$. Consider the functions $P(x)=x^{3}-x$ and $Q(x)=3 x^{2}+x^{4}$.
(a) Determine the parity of the functions $P(x)$ and $Q(x)$, i.e., determine whether each function is odd or even.
(b) Sketch the graphs of $P(x)$ and $Q(x)$. How can you also tell the parity of each function from its graph?
(c) Evaluate the following integrals:
i. $\int_{0}^{1} P(x) d x$
ii. $\int_{-1}^{1} P(x) d x$
iii. $\int_{0}^{2} Q(x) d x$
iv. $\int_{-2}^{2} Q(x) d x$
(d) Do you notice anything interesting about your answers to ii and iv in (c)? What do the parities of $P(x)$ and $Q(x)$ have to do with these answers?
(e) Suppose that $k(x)$ is an odd function and $\int_{0}^{a} k(x) d x=N$. Find $\int_{-a}^{a} k(x) d x$. Defend your answer using the substitution rule.
(f) Suppose that $l(x)$ is an even function and $\int_{0}^{b} l(x) d x=M$. Find $\int_{-b}^{b} l(x) d x$. Defend your answer using the substitution rule.

